

Putting plate kinematics to good use

Louis Moresi louis.moresi@anu.edu.au

What are the rules?

Plate boundaries: 3 types

Ridges: plates moving apart

Spreading is typically symmetric

Spreading is typically orthogonal

Trenches: plates converging

Subduction is highly asymmetric

Subduction is not usually orthogonal

Transform faults: motion parallel to boundary

Triple junctions

Triple junctions are places where three plates (and three boundaries) meet. E.g. at a ridge-ridge-ridge junction all the plates are separating, and all three are moving relative to the junction itself.

How do we calculate the velocity of the junction (over the "fixed" mantle)?

Note
$$_{A}\mathbf{V}_{B} + _{B}\mathbf{V}_{C} + _{C}\mathbf{V}_{A} = 0$$

Triple junction rules can be complicated!

McKenzie

& Parker

1967

4

Reconstructing past plates / boundaries

Reconstructing past plates / boundaries

Reconstructing past reconfigurations

How do we know there was a Farallon plate?

When does the San Andreas fault system appear?

Reconstructing past reconfigurations

How do we know there was a Farallon plate?

When does the San Andreas fault system appear?

The Farallon slab

Still very obvious in tomographic images

Clearly detached from surface where mid-ocean ridge was subducted

Plate boundary effects in the continent

The continental crust records the changes in the plate boundary but a lot more ambiguity than in the sea floor stripes

Plate boundary effects in the continent

The continental crust records the changes in the plate boundary but a lot more ambiguity than in the sea floor stripes

Basin and range

Extensional tectonics

- Change of plate boundary forces
- Coupling to Pacific plate
- Slab detachment / thermal effects

Lava Lake Tectonics

- Note how spreading centres move across the lake as spreading progresses
- Different rates for different plates, rearrangements.

Lava Lake Tectonics

- Note how spreading centres move across the lake as spreading progresses
- Different rates for different plates, rearrangements.

How do we evolve plate boundaries?

The "rules" of plate kinematics work well for oceanic plate boundaries under most circumstances. To apply them we need to look at:

- Relative nature of plate motion
- Addition of plate motion vectors
- Hotspot tracks

Triple junctions & stability criteria.

Today

Some time later...

$$_BV_A = -_AV_B$$

$${}_{A}V_{C} = {}_{A}V_{B} + {}_{B}V_{C}$$
$${}_{B}V_{C} = {}_{A}V_{C} - {}_{A}V_{B} = {}_{A}V_{C} + {}_{B}V_{A}$$

$${}_{A}V_{C} = {}_{A}V_{B} + {}_{B}V_{C}$$

$${}_{B}V_{C} = {}_{A}V_{C} - {}_{A}V_{B} = {}_{A}V_{C} + {}_{B}V_{A}$$

Detour — vectors

- · Have magnitude and direction
- Examples:
 - Velocity (speed in given direction)
 - Acceleration
 - Displacement (offset and direction)
- Described in terms of
 - ightharpoonup Length and Direction (r, θ)
 - Cartesian offset (x,y)

$$\mathbf{d} = (d_1, d_2) = (r \sin \theta, r \cos \theta)$$

Think of giving someone directions by compass bearing "to get to the pub from here, walk one hundred metres in a roughly north-easterly direction ..."

To add vectors we can think again of "adding" compass bearings

To add vectors we can think again of "adding" compass bearings

To add vectors we can think again of "adding" compass bearings

To add vectors we can think again of "adding" compass bearings

$$\mathbf{d}_a = (0, 80)$$
 $\mathbf{d}_b = (60, 0)$
 $\mathbf{d}_{\mathrm{pub}} = (60, 80)$
 $|\mathbf{d}_{\mathrm{pub}}| = \sqrt{60^2 + 80^2}$

To add vectors we can think again of "adding" compass bearings

Non-orthogonal boundaries

Non-orthogonal boundaries

Non-orthogonal boundaries

Generalize the previous example — no matter what the plate boundary types \dots

Generalize the previous example — no matter what the plate boundary types ...

Generalize the previous example — no matter what the plate boundary types ...

Generalize the previous example — no matter what the plate boundary types ...

Motions on a sphere

So far we have looked at everything as though it were happening on a flat Earth ... This is not the case, and on a plate scale, the curvature cannot be ignored.

Consequences:

- The (relative) motion of plates is described by rotation pole and angular velocity
- Transform faults lie along small circles relative to this pole
- The velocity (magnitude & direction) of points on a plate varies systematically over the plate

To describe plate motions and do reconstructions we need to understand how to move plates on the surface of a sphere. We also need to understand how to do this quantitatively.

Pacific / North America Rotation Pole

Transform faults v. Fracture zones

Transform faults v. Fracture zones

Transform faults v. Fracture zones

Plate motions on a sphere

Plate motions on a sphere

North America / Pacific elevation

Pacific / North America Rotation Pole

Pacific age grid

Africa / South America elevation

Atlantic age grid

°

40°